Refine Your Search

Topic

Author

Search Results

Technical Paper

Effects of Fuel Volatility and Operating Conditions on Fuel Sprays in DISI Engines: (2) PDPA Investigation

2000-03-06
2000-01-0536
Optimal design of modern direct injection spark-ignition engines depends heavily on the characteristics and distribution of the fuel spray. This study was designed to compliment imaging experiments of changes in the spray structure due to fuel volatility and operating conditions. Use of phase-Doppler particle analysis (PDPA) allows quantitative point measurements of droplet diameter and velocity. In agreement with imaging experiments, the results show that the spray structure changes not only with ambient gas density, which is often measured, but also with fuel temperature and volatility. The mean droplet diameter was found to decrease substantially with increasing fuel temperature and decreasing ambient density. Under conditions of low potential for vaporization, the observed trends in mean droplet sizes agree with published correlations for pressure-swirl atomizers.
Technical Paper

Effects of Fuel Volatility and Operating Conditions on Fuel Sprays in DISI Engines: (1) Imaging Investigation

2000-03-06
2000-01-0535
Optimal design of modern direct injection spark-ignition engines depends heavily on the characteristics and distribution of the fuel spray. This study was designed to investigate changes in the spray properties due to fuel volatility and operating conditions using a firing optically-accessible engine with planar laser-induced fluorescence (PLIF) imaging. The results show that the spray structure changes not only with ambient gas density, which is often measured, but also with fuel temperature and volatility. As ambient pressure decreases and fuel temperature increases, the volatile ends of multi-component fuels evaporate quickly, disrupting the spray structure and producing a vapor core along the axis of the spray. Beyond a certain point, evaporation is rapid enough to expand the initial cone angle of the spray while causing a decrease in the overall spray width.
Technical Paper

Experiments and Analyses on Stability/Mid-Channel Collapse of Ash-Deposit Wall Layers and Pre-Mature Clogging of Diesel Particulate Filters

2019-04-02
2019-01-0972
The conventional concept of soot and ash wall deposits (i.e. cake-layers) gradually building up along the channels of a ceramic honeycomb and then periodically or continuously being swept downstream toward the end-plugs of the channels may not always occur in practice. When deposits irregularly form on or detach from the walls, causing premature clogging usually around the mid-sections of the channels (also known as Mid-Channel Collapse), and the particulate filter is prone to experiencing significantly elevated back pressure, resulting in the need for earlier repair or replacement than desired. Here we describe related experiments that were performed, accompanied by analysis and simulation, in order to investigate the factors that contribute to the patterns of wall deposits that form-particularly of ash-and the effects of these irregular patterns.
Technical Paper

Performance Maps of Turbocharged SI Engines with Gasoline-Ethanol Blends: Torque, Efficiency, Compression Ratio, Knock Limits, and Octane

2014-04-01
2014-01-1206
1 Downsizing and turbocharging a spark-ignited engine is becoming an important strategy in the engine industry for improving the efficiency of gasoline engines. Through boosting the air flow, the torque is increased, the engine can thus be downsized, engine friction is reduced in both absolute and relative terms, and engine efficiency is increased. However knock onset with a given octane rating fuel limits both compression ratio and boost levels. This paper explores the operating limits of a turbocharged engine, with various gasoline-ethanol blends, and the interaction between compression ratio, boost levels, and spark retard, to achieve significant increases in maximum engine mean effective pressure and efficiency.
Technical Paper

An Adaptive Air/Fuel Ratio Controller for SI Engine Throttle Transients

1999-03-01
1999-01-0552
An adaptive air/fuel ratio controller for SI engine throttle transient was developed. The scheme is based on an event- based, single- parameter fuel dynamics model. A least- square- error algorithm with an active forgetting factor was used for parameter identifications. A one- step- look- ahead controller was designed to maintain the desired air/fuel ratio by canceling the fuel dynamics with the controller setting updated adaptively according to the identified parameters. When implemented on a Ford Ztech engine and tested under a set of throttle- transient operations, the adaptive controller learned quickly and performed well.
Technical Paper

Effects of Ethanol Evaporative Cooling on Particulate Number Emissions in GDI Engines

2018-04-03
2018-01-0360
The spark ignition engine particulate number (PN) emissions have been correlated to a particulate matter index (PMI) in the literature. The PMI value addresses the fuel effect on PN emission through the individual fuel species reactivity and vapor pressure. The latter quantity is used to account for the propensity of the non-volatile fuel components to survive to the later part of the combustion event as wall liquid films, which serve as sources for particulate emission. The PMI, however, does not encompass the suppression of vaporization by the evaporative cooling of fuel components, such as ethanol, that have high latent heat of vaporization. This paper assesses this evaporative cooling effect on PN emissions by measurements in a GDI engine operating with a base gasoline which does not contain oxygenate, with a blend of the gasoline and ethanol, and with a blend of the gasoline, ethanol, and a hydrocarbon additive so that the blend has the same PMI as the original gasoline.
Technical Paper

Contribution of Liquid Fuel to Hydrocarbon Emissions in Spark Ignition Engines

2001-09-24
2001-01-3587
The purpose of this work was to develop an understanding of how liquid fuel transported into the cylinder of a port-fuel-injected gasoline-fueled SI engine contributes to hydrocarbon (HC) emissions. To simulate the liquid fuel flow from the valve seat region into the cylinder, a specially designed fuel probe was developed and used to inject controlled amounts of liquid fuel onto the port wall close to the valve seat. By operating the engine on pre-vaporized Indolene, and injecting a small amount of liquid fuel close to the valve seat while the intake valve was open, we examined the effects of liquid fuel entering the cylinder at different circumferential locations around the valve seat. Similar experiments were also carried out with closed valve injection of liquid fuel at the valve seat to assess the effects of residual blowback, and of evaporation from the intake valve and port surfaces.
Technical Paper

Analysis of Fuel Behavior in the Spark-Ignition Engine Start-Up Process

1995-02-01
950678
An analysis method for characterizing fuel behavior during spark-ignition engine starting has been developed and applied to several sets of start-up data. The data sets were acquired from modern production vehicles during room temperature engine start-up. Two different engines, two control schemes, and two engine temperatures (cold and hot) were investigated. A cycle-by-cycle mass balance for the fuel was used to compare the amount of fuel injected with the amount burned or exhausted as unburned hydrocarbons. The difference was measured as “fuel unaccounted for”. The calculation for the amount of fuel burned used an energy release analysis of the cylinder pressure data. The results include an overview of starting behavior and a fuel accounting for each data set Overall, starting occurred quickly with combustion quality, manifold pressure, and engine speed beginning to stabilize by the seventh cycle, on average.
Technical Paper

A Model for Predicting Residual Gas Fraction in Spark-Ignition Engines

1993-03-01
931025
A model for calculating the residual gas fraction in spark ignition engines has been formulated. The model accounts explicitly for the contribution due to the back flow of exhaust gas to the cylinder during the valve overlap period. The model has been calibrated with in-cylinder hydrocarbon measurements at different values of intake pressure, engine speed, and valve overlap timings.
Journal Article

Modeling of Oil Transport between Piston Skirt and Cylinder Liner in Internal Combustion Engines

2019-04-02
2019-01-0590
The distribution of lubricating oil plays a critical role in determining the friction between piston skirt and cylinder liner, which is one of the major contributors to the total friction loss in internal combustion engines. In this work, based upon the experimental observation an existing model for the piston secondary motion and skirt lubrication was improved with a physics-based model describing the oil film separation from full film to partial film. Then the model was applied to a modern turbo-charged SI engine. The piston-skirt FMEP predicted by the model decreased with larger installation clearance, which was also observed from the measurements using IMEP method at the rated. It was found that the main period of the cycle exhibiting friction reduction is in the expansion stroke when the skirt only contacts the thrust side for all tested installation clearances.
X